Part Number Hot Search : 
SMAJ36A T5894 RKBPC801 HT36A407 BY255 IR2125Z 74VCX32 BAT54SDW
Product Description
Full Text Search
 

To Download IRG4BC20MD Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  IRG4BC20MD insulated gate bipolar transistor with ultrafast soft recovery diode features features features features features e g n-channel c v ces = 600v v ce(on) typ. = 1.85v @v ge = 15v, i c = 11a parameter min. typ. max. units r q jc junction-to-case - igbt ------ ------ 2.1 r q jc junction-to-case - diode ------ ------ 2.5 c/w r q cs case-to-sink, flat, greased surface ------ 0.50 ------ r q ja junction-to-ambient, typical socket mount ----- ----- 80 wt weight ------ 2 (0.07) ------ g (oz) thermal resistance 3/6/01 absolute maximum ratings parameter max. units v ces collector-to-emitter voltage 600 v i c @ t c = 25c continuous collector current 18 i c @ t c = 100c continuous collector current 11 i cm pulsed collector current ? 36 a i lm clamped inductive load current ? 36 i f @ t c = 100c diode continuous forward current 7.0 t sc short circuit withstand time 10 s i fm diode maximum forward current 36 a v ge gate-to-emitter voltage 20 v p d @ t c = 25c maximum power dissipation 60 p d @ t c = 100c maximum power dissipation 24 t j operating junction and -55 to +150 t stg storage temperature range c soldering temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case) mounting torque, 6-32 or m3 screw. 10 lbf?in (1.1 n?m) ? rugged: 10sec short circuit capable at v gs =15v ? low v ce(on) for 4 to 10khz applications ? igbt co-packaged with ultra-soft-recovery antiparallel diode ? industry standard to-220ab package benefits ? offers highest efficiency and short circuit capability for intermediate applications ? provides best efficiency for the mid range frequency (4 to 10khz) ? optimized for appliance motor drives, industrial (short circuit proof) drives and intermediate frequency range drives ? high noise immune "positive only" gate drive- negative bias gate drive not necessary ? for low emi designs- requires little or no snubbing ? single package switch for bridge circuit applications ? compatible with high voltage gate driver ic's ? allows simpler gate drive pd -94115 w t o -22 0 ab www.irf.com 1 short circuit rated fast igbt
IRG4BC20MD 2 www.irf.com parameter min. typ. max. u nits conditions v (br)ces collector-to-emitter breakdown voltage ? 600 ---- ---- v v ge = 0v, i c = 250a d v (br)ces / d t j temperature coeff. of breakdown voltage ---- 0.67 ---- v/c v ge = 0v, i c = 1.0ma v ce(on) collector-to-emitter saturation voltage ---- 1.85 2.1 i c = 11a v ge = 15v ---- 2.46 ---- v i c = 18a see fig. 2, 5 ---- 2.07 ---- i c = 11a, t j = 150c v ge(th) gate threshold voltage 4.0 ---- 6.5 v ce = v ge , i c = 250a d v ge(th) / d t j temperature coeff. of threshold voltage ---- -11 ---- m v/c v ce = v ge , i c = 250a g fe forward transconductance ? 3.0 3.6 ---- s v ce = 100v, i c = 11a i ces zero gate voltage collector current ---- ---- 250 a v ge = 0v, v ce = 600v ---- ---- 2500 v ge = 0v, v ce = 600v, t j = 150c v fm diode forward voltage drop ---- 1.4 1.7 v i c = 8.0a see fig. 13 ---- 1.3 1.6 i c = 8.0a, t j = 150c i ges gate-to-emitter leakage current ---- ---- 100 na v ge = 20v electrical characteristics @ t j = 25c (unless otherwise specified) parameter min. typ. max. units conditions q g total gate charge (turn-on) ---- 39 59 i c = 11a qge gate - emitter charge (turn-on) ---- 5.3 8.0 nc v cc = 400v see fig. 8 q gc gate - collector charge (turn-on) ---- 20 30 v ge = 15v t d(on) turn-on delay time ---- 21 ---- t j = 25c t r rise time ---- 37 ---- ns i c = 11a, v cc = 480v t d(off) turn-off delay time ---- 463 690 v ge = 15v, r g = 50 w t f fall time ---- 340 510 energy losses include "tail" and e on turn-on switching loss ---- 0.41 ---- diode reverse recovery. e off turn-off switching loss ---- 2.03 ---- mj see fig. 9, 10, 11, 18 e ts total switching loss ---- 2.44 3.7 t d(on) turn-on delay time ---- 19 ---- t j = 150c, see fig. 9, 10, 11, 18 t r rise time ---- 41 ---- ns i c = 6.5a, v cc = 480v t d(off) turn-off delay time ---- 590 ---- v ge = 15v, r g = 50 w t f fall time ---- 600 ---- energy losses include "tail" and e ts total switching loss ---- 3.49 ---- mj diode reverse recovery. l e internal emitter inductance ---- 7.5 ---- nh measured 5mm from package c ies input capacitance ---- 460 ---- v ge = 0v c oes output capacitance ---- 54 ---- pf v cc = 30v see fig. 7 c res reverse transfer capacitance ---- 14 ---- ? = 1.0mhz t rr diode reverse recovery time ---- 37 55 ns t j = 25c see fig. ---- 55 90 t j = 125c 14 i f = 8.0a i rr diode peak reverse recovery current ---- 3.5 5.0 a t j = 25c see fig. ---- 4.5 8.0 t j = 125c 15 v r = 200v q rr diode reverse recovery charge ---- 65 138 nc t j = 25c see fig. ---- 124 360 t j = 125c 16 di/dt 200a/s di (rec)m /dt diode peak rate of fall of recovery ---- 240 ---- a/s t j = 25c see fig. during t b ---- 210 ---- t j = 125c 17 switching characteristics @ t j = 25c (unless otherwise specified)
IRG4BC20MD www.irf.com 3 fig. 1 - typical load current vs. frequency (load current = i rms of fundamental) fig. 2 - typical output characteristics fig. 3 - typical transfer characteristics 0.1 1 10 100 6 8 10 12 14 16 v , gate-to-emitter voltage (v) i , collector-to-emitter current (a) ge c v = 50v 5s pulse width cc t = 25 c j t = 150 c j 0.1 1.0 10.0 v ce , collector-to-emitter voltage (v) 0.1 1 10 100 i c , collector-to emitter current (a) v ge = 15v 20s pulse width t j = 25c t j = 150c 0.1 1 10 100 f , frequency ( khz ) 0 2 4 6 8 10 12 load current ( a ) duty cycle : 50% tj = 125c tsink = 90c gate drive as specified turn-on losses include effects of reverse recovery power dissipation = 13w 60% of rated voltage ideal diodes
IRG4BC20MD 4 www.irf.com fig. 5 - typical collector-to-emitter voltage vs. junction temperature fig. 4 - maximum collector current vs. case temperature fig. 6 - maximum igbt effective transient thermal impedance, junction-to-case 25 50 75 100 125 150 0 5 10 15 20 t , case temperature ( c) maximum dc collector current(a) c -60 -40 -20 0 20 40 60 80 100 120 140 t j , junction temperature (c) 1.0 2.0 3.0 4.0 v ce , collector-to emitter voltage (v) i c = 22a v ge = 15v 80s pulse width i c = 11a i c = 5.5a 0.01 0.1 1 10 0.00001 0.0001 0.001 0.01 0.1 1 notes: 1. duty factor d = t / t 2. peak t = p x z + t 1 2 j dm thjc c p t t dm 1 2 t , rectangular pulse duration (sec) thermal response (z ) 1 thjc 0.01 0.02 0.05 0.10 0.20 d = 0.50 single pulse (thermal response)
IRG4BC20MD www.irf.com 5 fig. 7 - typical capacitance vs. collector-to-emitter voltage fig. 8 - typical gate charge vs. gate-to-emitter voltage fig. 9 - typical switching losses vs. gate resistance fig. 10 - typical switching losses vs. junction temperature 1 10 100 0 200 400 600 800 v , collector-to-emitter volta g e (v) c, capacitance (pf) ce v c c c = = = = 0v, c c c f = 1mhz + c + c c shorted ge ies g e g c , ce res g c oes ce g c c ies c oes c res 0 10 20 30 40 0 4 8 12 16 20 q , total gate charge (nc) v , gate-to-emitter voltage (v) g ge v = 400v i = 11a cc c 0 10 20 30 40 50 r g , gate resistance ( w ) 2.3 2.4 2.5 total switching losses (mj) v cc = 480v v ge = 15v t j = 25c i c = 11a -60 -40 -20 0 20 40 60 80 100 120 140 160 t j , junction temperature (c) 0.1 1 10 100 total switching losses (mj) r g = 50 w v ge = 15v v cc = 480v i c = 22a i c = 11a i c = 5.5a
IRG4BC20MD 6 www.irf.com fig. 11 - typical switching losses vs. collector-to-emitter current fig. 12 - turn-off soa fig. 13 - maximum forward voltage drop vs. instantaneous forward current 0.1 1 10 100 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 fm f instantaneous forward current - i (a) forward volta g e drop - v ( v ) t = 150c t = 125c t = 25c j j j 5 10 15 20 25 i c , collector current (a) 0.0 2.0 4.0 6.0 8.0 10.0 total switching losses (mj) r g = 50 w tj = 150c v ge = 15v v cc = 480v 1 10 100 1000 v ds , drain-to-source voltage (v) 1 10 100 c, capacitance(pf) v ge = 20v t j = 125 safe operating area
IRG4BC20MD www.irf.com 7 fig. 14 - typical reverse recovery vs. di f /dt fig. 15 - typical recovery current vs. di f /dt fig. 16 - typical stored charge vs. di f /dt fig. 17 - typical di (rec)m /dt vs. di f /dt 0 100 200 300 400 500 100 1000 f di /dt - ( a/ s ) rr q - (nc) i = 16a i = 8 .0a i = 4.0a f f f v = 200v t = 125c t = 25c r j j 100 1000 10000 100 1000 f di /dt - ( a/ s ) di(rec)m/dt - (a/s) i = 16a i = 8.0a i = 4.0a f f f v = 200v t = 125c t = 25c r j j 1 10 100 100 1000 f di /dt - ( a/ s ) i - (a) irrm i = 16a i = 8.0a i = 4.0a f f f v = 200v t = 125c t = 25c r j j 0 20 40 60 80 100 100 1000 f di /dt - ( a/ s ) t - (ns) rr i = 16a i = 8 .0a i = 4.0a f f f v = 200v t = 125c t = 25c r j j
IRG4BC20MD 8 www.irf.com t1 ic vce t1 t2 90% ic 10% vce td(off) tf ic 5% ic t1+ 5 s vce ic dt 90% vge +vge eoff = fig. 18b - test waveforms for circuit of fig. 18a, defining e off , t d(off) , t f vce ie dt t2 t1 5% vce ic ipk vcc 10% ic vce t1 t2 dut voltage and current gate voltage d.u.t. +vg 10% +vg 90% ic tr td(on) diode reverse recovery energy tx eon = erec = t4 t3 vd id dt t4 t3 diode recovery w aveforms ic vpk 10% vcc irr 10% irr vcc trr qrr = trr tx id dt same type device as d.u.t. d.u.t. 430f 80% of vce fig. 18a - test circuit for measurement of i lm , e on , e off(diode) , t rr , q rr , i rr , t d(on) , t r , t d(off) , t f fig. 18c - test waveforms for circuit of fig. 18a, defining e on , t d(on) , t r fig. 18d - test waveforms for circuit of fig. 18a, defining e rec , t rr , q rr , i rr
IRG4BC20MD www.irf.com 9 vg gate signal device under test current d.u.t. voltage in d.u.t. current in d1 t0 t1 t2 d.u.t. v * c 50v l 1000v 6000f 100v figure 19. clamped inductive load test circuit figure 20. pulsed collector current test circuit r l = 480v 4 x i c @25c 0 - 480v figure 18e. macro waveforms for figure 18a's test circuit
IRG4BC20MD 10 www.irf.com case outline to-220ab notes: ? repetitive rating: v ge =20v; pulse width limited by maximum junction tem- perature (figure 20) ? v cc =80%(v ces ), v ge =20v, l=10h, r g = 50 w (figure 19) ? pulse width 80s; duty factor 0.1%. ? pulse width 5.0s, single shot. 0.55 (.022) 0.46 (.018) 3 x 2.92 (.115) 2.64 (.104) 1.32 (.052) 1.22 (.048) - b - 4.69 (.185) 4.20 (.165) 3.78 (.149) 3.54 (.139) - a - 6.47 (.255) 6.10 (.240) 1.15 (.045) m in 4.06 (.160) 3.55 (.140) 3 x 3.96 (.160) 3.55 (.140) 3 x 0.93 (.037) 0.69 (.027) 0.36 (.014) m b a m 10.54 (.415) 10.29 (.405) 2.87 (.113) 2.62 (.103) 15.24 (.600) 14.84 (.584) 14.09 (.555) 13.47 (.530) 1.40 (.055) 1.15 (.045) 3 x 2.54 (.100) 2x 1 2 3 4 conforms to jedec outline to-220ab d im e ns io ns in m illim e ters a nd (in c he s) lead assignments 1 - g a te 2 - c o lle c to r 3 - em it te r 4 - c o lle c to r notes: 1 dimensions & tolerancing per ansi y14.5m, 1982. 2 controlling dimension : inch. 3 d im e n s io n s a r e s h o w n m illim e te r s ( inches ) . 4 conforms to jedec outline to-220ab. data and specifications subject to change without notice. this product has been designed and qualified for the industrial market. qualification standards can be found on irs web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 3/01


▲Up To Search▲   

 
Price & Availability of IRG4BC20MD

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X